N-Glycans mutations rule oligomeric assembly and functional expression of P2X3 receptor for extracellular ATP.

نویسندگان

  • Fabrizio Vacca
  • Nadia D'Ambrosi
  • Valeria Nestola
  • Susanna Amadio
  • Michela Giustizieri
  • Maria Letizia Cucchiaroni
  • Alessandro Tozzi
  • Marie Claire Velluz
  • Nicola Biagio Mercuri
  • Cinzia Volonté
چکیده

N-Glycosylation affects the function of ion channels at the level of multisubunit assembly, protein trafficking, ligand binding and channel opening. Like the majority of membrane proteins, ionotropic P2X receptors for extracellular ATP are glycosylated in their extracellular moiety. Here, we used site-directed mutagenesis to the four predicted N-glycosylation sites of P2X(3) receptor (Asn(139), Asn(170), Asn(194) and Asn(290)) and performed comparative analysis of the role of N-glycans on protein stability, plasma membrane delivery, trimer formation and inward currents. We have found that in transiently transfected HEK293 cells, Asn(170) is apparently the most important site for receptor stability, since its mutation causes a primary loss in protein content and indirect failure in membrane expression, oligomeric association and inward current responses. Even stronger effects are obtained when mutating Thr(172) in the same glycosylation consensus. Asn(194) and Asn(290) are the most dispensable, since even their simultaneous mutation does not affect any tested receptor feature. All double mutants containing Asn(170) mutation or the Asn(139)/Asn(290) double mutant are instead almost unable to assemble into a functional trimeric structure. The main emerging finding is that the inability to assemble into trimers might account for the impaired function in P2X(3) mutants where residue Asn(170) is replaced. These results improve our knowledge about the role of N-glycosylation in proper folding and oligomeric association of P2X(3) receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners.

P2X receptors are a distinct family of ligand-gated ion channels activated by extracellular ATP. Each of the seven identified subunit proteins (P2X1 through P2X7) has been reported to form functional homo-oligomeric channels when expressed in heterologous systems. Functional studies of native receptors, together with patterns of subunit gene expression, suggest that hetero-oligomeric assembly a...

متن کامل

Baculovirus expression provides direct evidence for heteromeric assembly of P2X2 and P2X3 receptors.

P2X2 and P2X3 are subunits of P2X receptors, cation channels opened by binding extracellular ATP. cDNAs encoding P2X2 and P2X3 receptor subunits, each with one of two C-terminal epitope tags, were cloned into baculovirus. Virally infected insect cells (Spodoptera frugiperda) expressed moderate to high levels of the corresponding proteins, as detected by Western blotting, by the specific binding...

متن کامل

ACCELERATED COMMUNICATION Role of Ectodomain Lysines in the Subunits of the Heteromeric P2X2/3 Receptor

Lysine residues near each end of the receptor ectodomain (in rat P2X2 Lys 69 and Lys) have been implicated in ATP binding to P2X receptors. We recorded membrane currents from human embryonic kidney cells expressing P2X subunits and found that lysine-to-alanine substitutions at equivalent positions in the P2X3 receptor (Lys 63 and Lys) also prevented channel function. Heteromeric P2X2/3 receptor...

متن کامل

Subunit arrangement in P2X receptors.

ATP-gated ionotropic receptors (P2X receptors) are distributed widely in the nervous system. For example, a hetero-oligomeric receptor containing both P2X2 and P2X3 subunits is involved in primary afferent sensation. Each subunit has two membrane-spanning domains. We have used disulfide bond formation between engineered cysteines to demonstrate close proximity between the outer ends of the firs...

متن کامل

Mol082099 640..647

Purinergic signaling contributes significantly to pain mechanisms, and the nociceptor-specific P2X3 ATP receptor channel is considered a target in pain therapeutics. Recent findings suggesting the coexpression of metabotropic P2Y receptors with P2X3 implies that ATP release triggers the activation of both ionotropic and metabotropic purinoceptors, with strong potential for functional interactio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glycobiology

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2011